

Silicon NPN Planar RF Transistor

Description

The main purpose of this bipolar transistor is broadband amplification up to 1 GHz. In the space-saving 3-pin surface-mount SOT-490 package electrical performance and reliability are taken to a new level covering a smaller footprint on PC boards than previous packages. In addition to space savings, the SOT-490 provides a higher level of reliability than other 3-pin packages, such as more resistance to moisture. Due to the short length of its leads the SOT-490 is also reducing package inductances resulting in some bet-

ter electrical performance. All of these aspects make this device an ideal choice for demanding RF applications.

Features

- High power gain
- Low noise figure
- High transition frequency

Applications Wide band amplifier up to GHz range.

Mechanical Data

Typ: BFR92AF Case: SOT-490 Plastic case Weight: approx. 2.5 mg Pinning: 1 = Collector, 2 = Base, 3 = Emitter

Parts Table

Part	Marking	Package
BFR92AF	P2	SOT-490

Absolute Maximum Ratings

 $T_{amb} = 25 \ ^{\circ}C$, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Collector-base voltage		V _{CBO}	20	V
Collector-emitter voltage		V _{CEO}	15	V
Emitter-base voltage		V _{EBO}	2	V
Collector current		Ι _C	30	mA
Total power dissipation	$T_{amb} \le 60 \ ^{\circ}C$	P _{tot}	200	mW
Junction temperature		Тj	150	°C
Storage temperature range		T _{stg}	-65 to +150	°C

Maximum Thermal Resistance

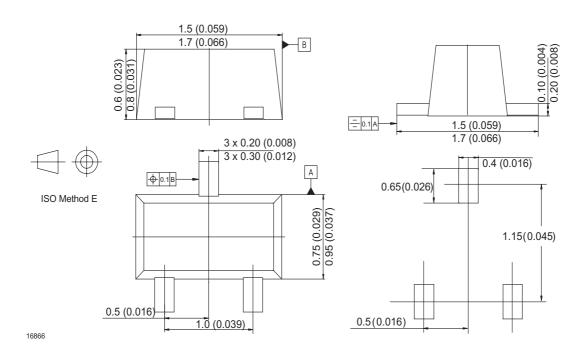
Parameter	Test condition	Symbol	Value	Unit
Junction ambient	1)	R _{thJA}	450	K/W

 $^{1)}$ on glass fibre printed board (25 x 20 x 1.5) mm^3 plated with 35 μm Cu

Electrical DC Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter cut-off current	$V_{CE} = 20 \text{ V}, \text{ V}_{BE} = 0$	I _{CES}			100	μA
Collector-base cut-off current	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0$	I _{CBO}			100	nA
Emitter-base cut-off current	$V_{EB} = 2 V, I_{C} = 0$	I _{EBO}			10	μA
Collector-emitter breakdown voltage	I _C = 1 mA, I _B = 0	V _{(BR)CEO}	15			V
DC forward current transfer ratio	$V_{CE} = 10 \text{ V}, I_{C} = 14 \text{ mA}$	h _{FE}	65	100	150	



Electrical AC Characteristics

 $T_{amb} = 25 \,^{\circ}C$, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Transition frequency	V _{CE} = 10 V, I _C = 14 mA, f = 500 MHz	f _T		6		GHz
Collector-base capacitance	V _{CB} = 10 V, f = 1 MHz	C _{cb}		0.3		pF
Collector-emitter capacitance	V _{CE} = 10 V, f = 1 MHz	C _{ce}		0.15		pF
Emitter-base capacitance	V _{EB} = 0.5 V, f = 1 MHz	C _{eb}		0.65		pF
Noise figure	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 2 \text{ mA},$ $Z_{S} = 50 \Omega, \text{ f} = 800 \text{ MHz}$	F		1.8		dB
Power gain	$V_{CE} = 10 V, Z_S = 50 Ω,$ $Z_L = Z_{Lopt}, I_C = 14 mA,$ f = 800 MHz	G _{pe}		16.5		dB
Transducer gain	V_{CE} = 10 V, I _C = 14 mA, f = 800 MHz, Z _O = 50 Ω	IS _{21e} l ²		14		dB
Linear output voltage - two tone intermodulation test	$\begin{split} V_{CE} &= 10 \text{ V, } I_{C} = 14 \text{ mA,} \\ d_{\text{IM}} &= 60 \text{ dB, } f_{1} = 806 \text{ MHz,} \\ f_{2} &= 810 \text{ MHz, } Z_{S} = Z_{L} = 50 \Omega \end{split}$	V ₁ = V ₂		120		mV
Third order intercept point	$V_{CE} = 10 \text{ V}, I_{C} = 14 \text{ mA},$ f = 800 MHz	IP ₃		24		dBm

Package Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

4