Fairchild Semiconductors

Semiconductors

Linear I.C.'s - Voltage Comparators

μΑ710 High Speed Differential Comparator

GENERAL DESCRIPTION

The μ A710 is a differential voltage comparator intended for applications requiring high accuracy and fast response times. It is constructed on a single silicon chip using the Fairchild Planar* epitaxial process. The device is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms.

FEATURES

5mV maximum offset voltage. 5µA maximum offset current. 1000 minimum voltage gain. 20µV/°C maximum offset voltage drift.

ABSOLUTE MAXIMUM RATINGS

Positive supply voltage	+14.0V
Negative supply voitage	-7.0V
Peak output current	10mA
Differential input voltage	±5.0V
Input voltage	±7.0V
Internal power dissipation Metal can DIP	500mW 670mW
Storage temperature range Metal can, DIP	-65°C to +150°C
Operating temperature range Military (710M) Commercial (710C)	-55°C to +125°C 0°C to +70°C
Lead temperature Metal can, DIP (soldering, 60 seconds)	300°C

REFERENCE TABLE

Code	Stock No.
 710DC	35852X
710DM	35853R
710HC	35854G "
710HM	35855E

CONNECTION DIAGRAM

See outline drawing No. 131 for dimensions.

CONNECTION DIAGRAM

See outline drawing No. 97 for dimensions.