

5 MHz to 6000 MHz, Digital Step Attenuator

The QPC6614 is a 6-bit digital step attenuator (DSA) that features high linearity over the entire 31.5 dB gain control range with 0.5 dB steps. The QPC6614 uses serial control interface. The QPC6614 has a low insertion loss of 1.4 dB at 2 GHz. Patented circuit architecture provides overshoot-free transient switching performance. The QPC6614 is available in a 4.2 mm x 4.2 mm MCM package.

Functional Block Diagram

Ordering Information

QPC6614SQ	Sample bag with 25 pieces
QPC6614SR	7" Reel with 100 pieces
QPC6614TR13	13" Reel with 2500 pieces
QPC6614PCK401	5 MHz to 6000 MHz PCBA w/ 5-piece sample bag

Package: MCM, 24-pin, 4.2 mm x 4.2 mm x 0.975 mm

Features

- 6-Bit, 31.5 dB, 0.5 dB Step
- Patented Circuit Architecture
- Overshoot-free Transient Switching Performance
- Frequency Range 5 MHz to 6000 MHz
- High Linearity, IIP3 >+55 dBm
- Serial Control Interface
- Fast Switching Speed, <120 nsec Typical
- Single Supply 3 V to 5 V Operation
- RF Pins Have No DC Voltage, Can be DC Grounded Externally
- Power-up attenuation state programmable

Applications

- 2G through 4G Base Stations
- Point-to-Point
- WiFi
- Test Equipment

Revision DS20150821 © 2015 RF Micro Devices, Inc.

REMD + TriQuint = Qorvo

QPC6614

Absolute Maximum Ratings

Parameter	Rating	Units
Supply Voltage (V _{DD})	-0.5 to +6.0	V
All Other DC and Logic Pins (When V_{DD} Is Applied Prior to Any Other Pin Voltages)	-0.5 to V_{DD}	V
All Other DC and Logic Pins (When V_{DD} Is Not Applied Prior to Any Other Pin Voltages)	-0.5 to +4.0	V
Maximum Input Power at ATTIN Pin at +85°C Case Temperature	+30	dBm
Maximum Input Power at ATTOUT Pin at +85°C Case Temperature	+27	dBm
Storage Temperature Range	-40 to +150	°C
ESD Rating - Human Body Model (HBM)	1000	V
Moisture Sensitivity Level	MSL2	

rfmd》

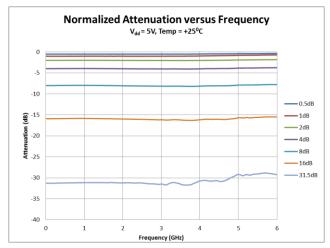
Caution! ESD sensitive device.

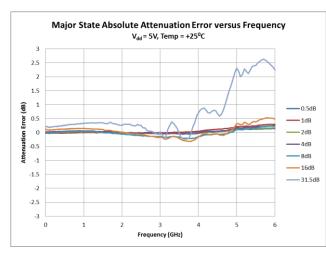
RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

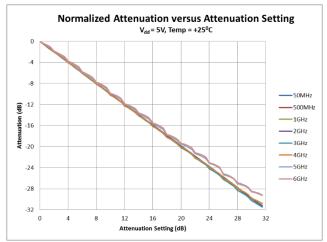
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

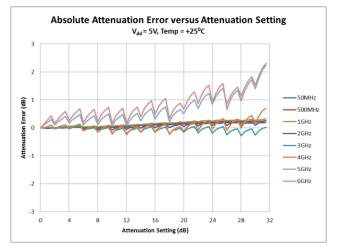
Recommended Operating Condition

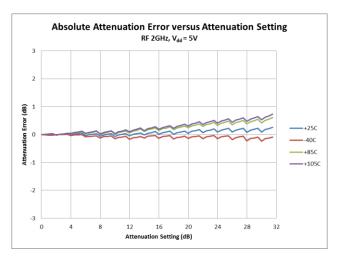
Parameter	S	Units			
	Min	Тур	Мах	onits	
Operation Temperature Range (Derate RF Input Power Handling Above 85 °C)	-40		+105	°C	
Operating Junction Temperature			+125	°C	
Supply Voltage	+2.7		+5.5	V	

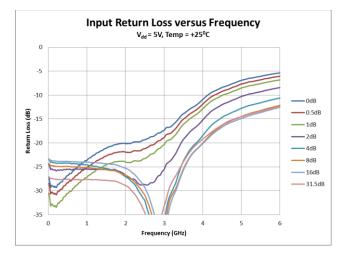

Electrical Specifications

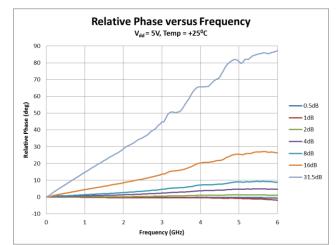

Parameter	Specification			Units	Condition	
r al allielei	Min	Тур	Max	Units	Condition	
General Performance						
Supply Current		180		μA	Steady state operation, current draw during attenuation state transitions is higher	
Thermal Resistance		60		°C/W	At maximum attenuation state with RF power applied to the ATTIN pin	
RF Input Power at ATTIN Pin			+27	dBm	Continuous exerction at LOE °C acces temperature	
RF Input Power at ATTOUT Pin			+20	dBm	Continuous operation at +85 °C case temperature	
RF Performance					Typical Performance at 2000 MHz, Vsupply=+5 V, Temp. = +25°C	
Frequency Range	5		6000	MHz		
Insertion Loss		1.4	2.4	dB	0 dB attenuation	
Attenuation Range		31.5		dB	0.5 dB step size	
Absolute Attenuation Error	0.3 ± 3%		dB			
Input IP3		+55		dBm		
Input P0.1dB		+30		dBm		
Return Loss		15		dB		
Input and Output Impedance		50		Ω		
Switching Speed		120		nsec	50 % control to 10 % / 90 % RF	
Successive Step Phase Delta		2		Deg		
Control					Serial Bus and PUP2 Pins	
Digital Logic Low			+0.63	V		
Digital Logic High	+1.17			V		

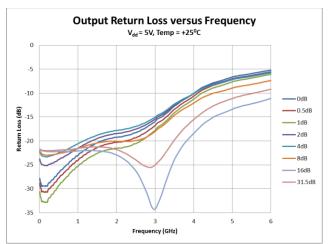


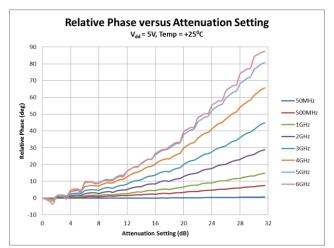

RF Performance Plots

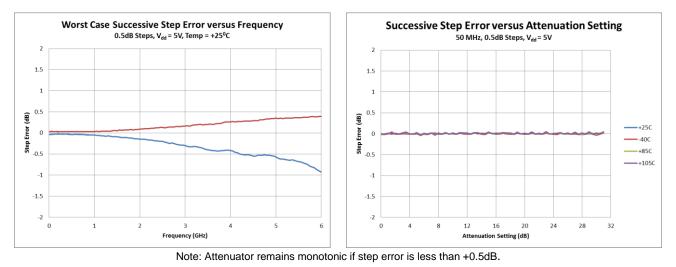


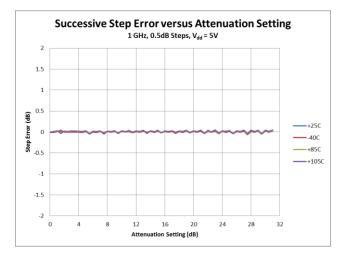




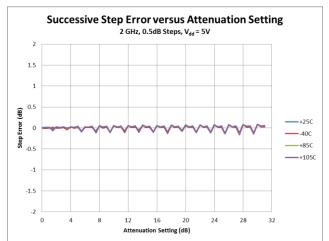

Revision DS20150821 © 2015 RF Micro Devices, Inc. Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com




RF Performance Plots

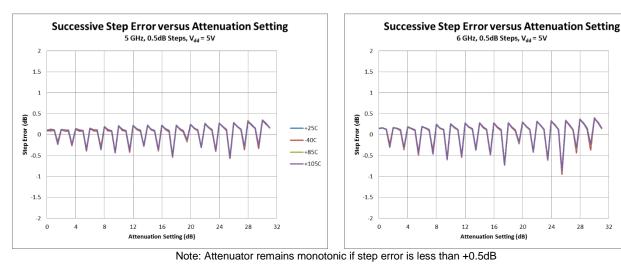


Revision DS20150821 © 2015 RF Micro Devices, Inc.


Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com

RF Performance Plots

6 GHz, 0.5dB Steps, V_{dd} = 5V


12

16

Attenuation Setting (dB)

20

24

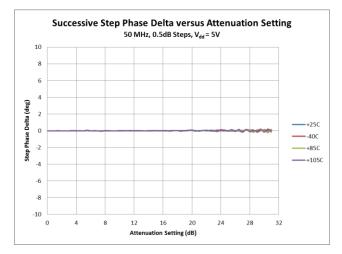
Revision DS20150821 © 2015 RF Micro Devices, Inc.

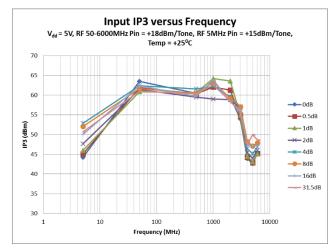
Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com

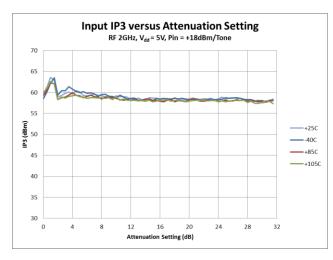
28

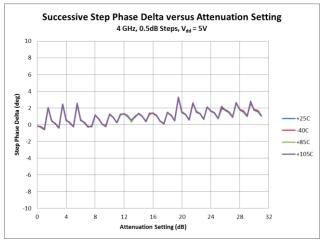
32

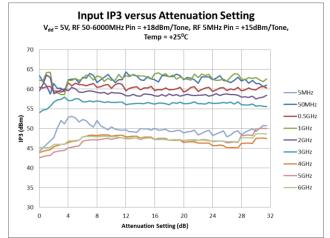
+25C

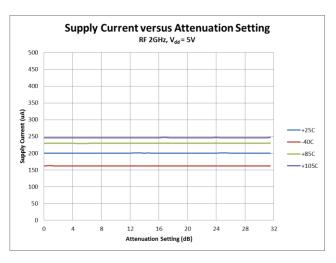

-40C

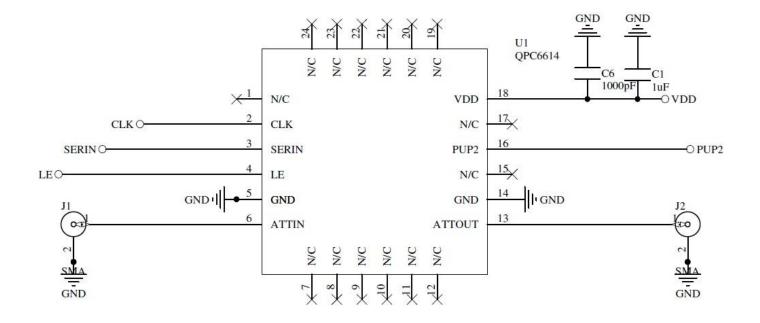

+850


+105C

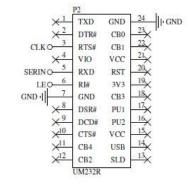


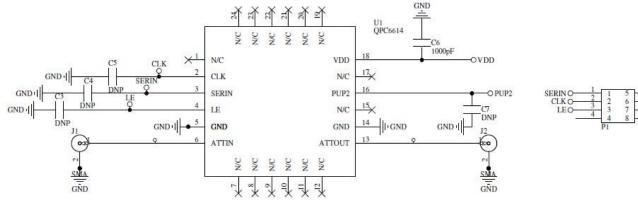

RF Performance Plots





Revision DS20150821 © 2015 RF Micro Devices, Inc. Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com


Typical Application Schematic



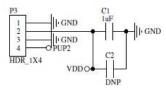
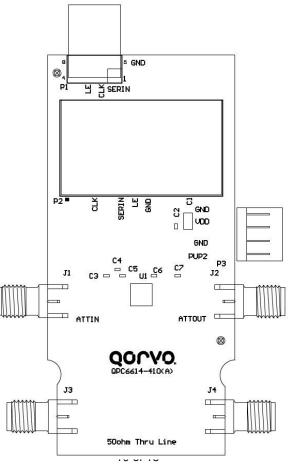

Evaluation Board Schematic

Image: Strain of the strain

GND


Evaluation Board Bill of Materials (BOM)

Description	Reference Designator	Manufacturer	Manufacturer's P/N	
QPC6614-410		ViaSystems	QPC6614-410(A)	
Digital Step Attenuator 5 MHz to 6000 MHz	U1	Qorvo	QPC6614SB	
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1- J4	Molex	SD-73251-4000	
CAP, 1µF, 10%, 25V, X7R, 1206	C1	Taiyo Yuden (USA), Inc.	CE TMK316B7105KL-T	
CAP, 1000pF, 10%, 50V, X7R, 0402	C6	TDK Corporation	C1005X7R1H102KT000F	
CONN, SKT, 24-PIN DIP, .600", T/H	P2	Aries Electronics Inc.	24-6518-10	
MOD, USB TO SERIAL UART, SSOP-28	M1 (See Note Below)	Future Technology Devices Int'l	UM232R	
CONN, HDR, ST, 4-PIN, 0.100"	P3	SAMTEC INC.	TSW-104-08-S-S	
CONN, HDR, 2 X 4, RA, 0.100, T/H	P1	SAMTEC INC.	TSW-104-08-G-D-RA	
DNP	C2- C5, C7	NA	NA	

Notes:

1. M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2.

Evaluation Board Assembly Drawing

Revision DS20150821 © 2015 RF Micro Devices, Inc. Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com

Evaluation Board Programming Using USB Interface

Serial Mode

Refer to the Control Bit Generator (CBG) Software Reference Manual for detailed instructions on how to setup the software for use. Apply the supply voltage to P3. Select QPC6614 from the RFMD Parts List of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurements can be taken.

Evaluation Board Programming Using External Bus

Serial Mode

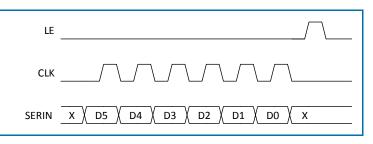
This configuration allows the user to control the attenuator through the P1 connector using an external harness. Remove the USB interface board if it is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. Note the top row of the P1 contains the serial bus signals and the bottom row is ground. Apply the supply voltage to P3. Send the appropriate signals onto the serial bus lines in accordance with the Serial Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

Default Power-up State

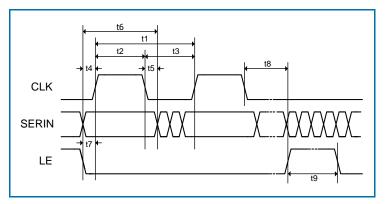
The attenuation state set during power-up can be controlled using the PUP2 pin. To power-up in the maximum attenuation state, apply a logic low to PUP2 pin prior to applying supply voltage V_{DD} . To power-up in the minimum attenuation state apply a logic high to the PUP2 pin prior to applying supply voltage V_{DD} .

Pin Names and Descriptions

Pin	Name	Description	
1	NC	No Internal Connection	
2	CLK	Serial Clock Input	
3	SERIN	Serial Data Input	
4	LE	Latch Enable	
5	GND	Connect to PCB Ground	
6	ATTIN	RF Input Pin. Incident RF power must enter this pin for rated thermal performance and reliability. Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.	
7	NC	No Internal Connection	
8	NC	No Internal Connection	
9	NC	No Internal Connection	
10	NC	No Internal Connection	
11	NC	No Internal Connection	
12	NC	No Internal Connection	
13	ATTOUT	RF Output Pin. Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded th resistors internal to the part.	
14	GND	Connect to PCB Ground	
15	NC	No Internal Connection	
16	PUP2	Power-up Programming Pin. See Default Power-up State Section for use.	
17	NC	No Internal Connection	
18	VDD	Supply Voltage	
19	NC	No Internal Connection	
20	NC	No Internal Connection	
21	NC	No Internal Connection	
22	NC	No Internal Connection	
23	NC	No Internal Connection	
24	NC	No Internal Connection	

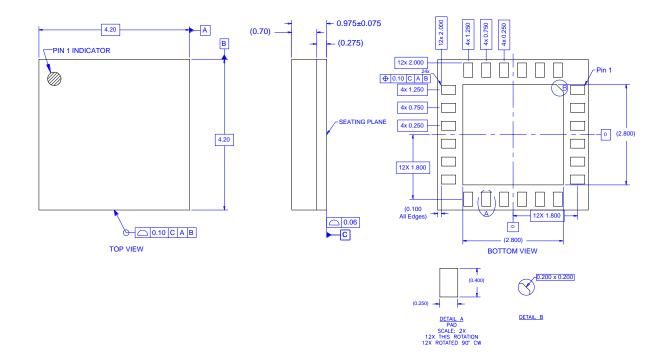

	Atte	enuatio	Attenuation State			
D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	(dB)
н	н	н	н	н	н	0dB/Reference Insertion Loss
Н	Н	Н	Н	Н	L	0.5 dB
Н	Н	Н	Н	L	Н	1 dB
Н	Н	Н	L	Н	Н	2 dB
Н	Н	L	Н	Н	Н	4 dB
Н	L	Н	Н	Н	Н	8 dB
L	Н	Н	Н	Н	Н	16 dB
L	L	L	L	L	L	31.5 dB

Serial Mode Attenuation Word Truth Table

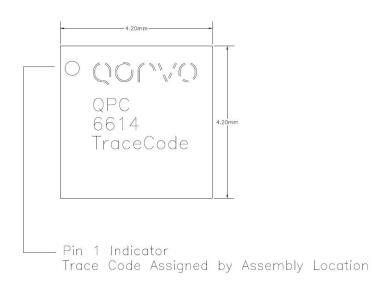

Serial Bus Timing Specifications

Parameter	Limit	Units	Comment
t1	25	MHz max	CLK Frequency
t2	20	ns min	CLK High
t3	20	ns min	CLK Low
t4	5	ns min	SERIN to CLK Setup Time
t5	5	ns min	SERIN to CLK Hold Time
t6	30	ns min	SERIN Valid
t7	5	ns min	LE to CLK Setup Time
t8	5	ns min	CLK to LE Setup Time
t9	10	ns min	LE Pulse Width

Serial Mode Timing Diagram



Serial Bus Timing Diagram


Package Outline

Notes:

1. Dimensions in millimeters

Branding Diagram

Disclaimer: Subject to change without notice www.rfmd.com / www.qorvo.com

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.rfmd.com Tel: 1-844-890-8163 Email: customer.support@gorvo.com

For information about the merger of RFMD and TriQuint as Qorvo:

Web: www.qorvo.com

Important Notice

The information contained herein is believed to be reliable. RFMD and/or Qorvo make no warranties regarding the information contained herein. RFMD and/or Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. RFMD and/or Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RFMD and/or Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RFMD and/or Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.